Makalah Bilangan Asam Basa

Posted: 12 November 2012 in Uncategorized

Kata pengantar

Assalamualaikum Wr.Wb

Puji syukur saya panjatkan kepada Tuhan Yang Maha Esa karena atas rahmat,hidayah yang sudah diberikan saya dapat menyelesaikan makalah ini tepat pada waktunya dengan baik dan benar

Penulis menyadari bahwa makalah ini masih jauh dari kesempurnaan yang mana semua itu  tejadi karena keterbatasaan pemahaman penulis Seperti kata pepatah “Tiada gading yang Tak Retak”. Kemudian penulis megharapkan kritik dan saran dari pembaca yang sifatnya membangun untuk perbaikan makalah ini, dan  penulis bisa mengetahui sampai dimana kemampuan penulis.

Akhir kata semoga makalah ini dapat bermanfaat bagi para pembaca. Jika ada kesalahan tutur kata dalam pembuatan makalah ini mohon dimaklumi karena tidak ada didunia ini yang sempurna selain Allah SWT

Wassallamualaikum Wr.Wb

Medan,09 November 2012

NURHABLI RIDWAN

NIM : 1209008927

 

BAB I

Pendahuluan

                      

  1. A.     Latar belakang

Asam dan basa merupakan dua senyawa kimia yang sering kita jumpai dalam kehidupan sehari-hari. Asam dan basa cukup penting bagi kita. Secara umum zat -zat yang termasuk asam mempunyai beberapa ciri yaitu rasanya asam, ph < 7 misalnya asam sitrat pada jeruk dan asam cuka. Sedangkan basa pada umumnya mempunyai sifat licin, terasa pahit, ph > 7 misalnya pada sabun.

Air merupakan elektrolit sangat lemah yang terionisasi menjadi ion h+ dan ion h-. Dalam air, asam melepaskan ion h+ sedangkan basa melepaskan ion oh-. Dalam air asam kuat dan basa kuat terionisasi seluruhnya. Sedangkan asam lemah dan basa lemah hanya terionisasi sebagian. Ph larutan menyatakan konsentrasi h+ dalam larutan. Penetralan asam oleh basa menghasilkan air, menurut bronsted lowry asam merupakan donor proton (h+) dan basa merupakan akseptor proton (oh-).

Di laboratorium asam dan basa secara sederhana dapat dikenali dengan menggunakan berbagai indikator, seperti indikator alami dan indikator buatan. Salah satu indikator yang umum dan sering digunakan yaitu kertas lakmus. Kertas lakmus akan berwarna merak ketika dimasukkan ke larutan yang bersifat asam. Dan saat lakmus dicelupkan ke larutan basa warnanya akan berubah menjadi biru.. Beberapa larutan asam dan basa merupakan larutan elektrolit, sehingga didalam air akan terurai menjadi ion-ionnya. Apakah yang menyebabkan suatu larutan bersifat asam, demikian pula apa penyebab suatu larutan bersifat basa.

  1. B.     Tujuan

Adapun tujaun dari pembuatan makalah ini yaitu:

  1. sebagai sumber informasi untuk mahasiswa.
  2. Agar dapat menambah pengetahuan dan pemahaman khusunya bagi mahasiswa mengenai bilangan asam basa.
  1. C.     Rumusanmasalah

a.    Faktor – faktor yang ada di dalam bilangan asam basa?

b.    Apa yang di maksud dengan asam basa?

c.    Rumus – rumus asam basa ?

BAB II

Pembahasan

 

  1. 1.            Pengertian

Pengertian Asam

Asam (yang sering diwakili dengan rumus umum HA) secara umum merupakan senyawa kimia yang bila dilarutkan dalam air akan menghasilkan larutan dengan pH lebih kecil dari 7. Dalam definisi modern, asam adalah suatu zat yang dapat memberi proton (ion H+) kepada zat lain (yang disebut basa), atau dapat menerima pasangan elektron bebas dari suatu basa. Suatu asam bereaksi dengan suatu basa dalam reaksi penetralan untuk membentuk garam. Contoh asam adalah asam asetat (ditemukan dalam cuka) dan asam sulfat (digunakan dalam baterai atau aki mobil). Asam umumnya berasa masam; walaupun demikian, mencicipi rasa asam, terutama asam pekat, dapat berbahaya dan tidak dianjurkan.

Berbagai definisi asam

Istilah “asam” merupakan terjemahan dari istilah yang digunakan untuk hal yang sama dalam bahasa-bahasa Eropa seperti acid (bahasa Inggris), zuur (bahasa Belanda), atau Säure (bahasa Jerman) yang secara harfiah berhubungan dengan rasa masam. Dalam kimia, istilah asam memiliki arti yang lebih khusus. Terdapat tiga definisi asam yang umum diterima dalam kimia, yaitu definisi Arrhenius, Bronsted-Lowry dan Lewis.

Arrhenius: Menurut definisi ini, asam adalah suatu zat yang meningkatkan konsentrasi ion hidronium (H3O+) ketika dilarutkan dalam air. Definisi yang pertama kali dikemukakan oleh Svante Arrhenius ini membatasi asam dan basa untuk zat-zat yang dapat larut dalam air. Menurut Svante Arrhenius : asam adalah zat yang dalam air dapat melepaskan ion [H+]. Asam merupakan senyawa yang dapat menghasilkan ion Hidrogen [H+], larutan asam mempunyai rasa asam dan bersifat korosif.

Teori Dasar

Svante August Arrhenius pada tahun 1887 menyatakan bahwa : “ Molekul-molekul elektrolit selalu menghasilkan ion-ion negatif dan positif jika dilarutkan dalam air “

Selanjutnya pada tahun 1900 Svante Arrhenius mengemukakan teori yang dikenal samapi sekarang yaitu Teori Asam Basa Arrhenius. “ asam merupakan suatu senyawa yagn dapat menghasilkan ion Hidrogen [H+] bila dilarutkan dalam air dan Basa merupakan suatu senyawa yang dapat memberikan ion Hidroksida (OH) bila dilarutkan dalam air.

Asam

  1. Asam Nitrat dalam air

HNO3 H+ + NO3

  1. Asam Klorida dalam air

HCl H+ + Cl

Setiap molekul HNO3 dan HCl hanya dapat menghasilkan 1 ion H+ disebut Valensi Asam. Asam semacam ini disebut juga asam monoprotik.

Asam yang setiap molekul cairnya menghasilkan 2 ion H+ disebut asam diprotik.

Asam yang setiap molekul cairnya menghasilkan 3 ion H+ disebut asam triprotik.

Asam diprotik dan asam triprotik dikelompokkan kedalam asam poliprotik.

Brønsted-Lowry: Menurut definisi ini, asam adalah pemberi proton kepada basa. Asam dan basa bersangkutan disebut sebagai pasangan asam-basa konjugat. Brønsted dan Lowry secara terpisah mengemukakan definisi ini, yang mencakup zat-zat yang tak larut dalam air (tidak seperti pada definisi Arrhenius).

Lewis: Menurut definisi ini, asam adalah penerima pasangan elektron dari basa. Definisi yang dikemukakan oleh Gilbert N. Lewis ini dapat mencakup asam yang tak mengandung hidrogen atau proton yang dapat dipindahkan, seperti besi(III) klorida. Definisi Lewis dapat pula dijelaskan dengan teori orbital molekul. Secara umum, suatu asam dapat menerima pasangan elektron pada orbital kosongnya yang paling rendah (LUMO) dari orbital terisi yang tertinggi (HOMO) dari suatu basa. Jadi, HOMO dari basa dan LUMO dari asam bergabung membentuk orbital molekul ikatan.

Walaupun bukan merupakan teori yang paling luas cakupannya, definisi Brønsted-Lowry merupakan definisi yang paling umum digunakan. Dalam definisi ini, keasaman suatu senyawa ditentukan oleh kestabilan ion hidronium dan basa konjugat terlarutnya ketika senyawa tersebut telah memberi proton ke dalam larutan tempat asam itu berada. Stabilitas basa konjugat yang lebih tinggi menunjukkan keasaman senyawa bersangkutan yang lebih tinggi.

Sistem asam/basa; tak ada perubahan bilangan oksidasi dalam reaksi asam-basa.

Sifat-sifat

Secara umum, asam memiliki sifat sebagai berikut:

1. Rasa: masam ketika dilarutkan dalam air.

2. Sentuhan: asam terasa menyengat bila disentuh, terutama bila asamnya asam kuat.

3. Kereaktifan: asam bereaksi hebat dengan kebanyakan logam, yaitu korosif terhadap logam.

4. Hantaran listrik: asam, walaupun tidak selalu ionik, merupakan elektrolit.

Sifat kimia

Dalam air, reaksi kesetimbangan berikut terjadi antara suatu asam (HA) dan air, yang berperan sebagai basa,

HA + H2O ↔ A + H3O+

Tetapan asam adalah tetapan kesetimbangan untuk reaksi HA dengan air:

Asam kuat mempunyai nilai Ka yang besar (yaitu, kesetimbangan reaksi berada jauh di kanan, terdapat banyak H3O+; hampir seluruh asam terurai). Misalnya, nilai Ka untuk asam klorida (HCl) adalah 107.

Asam lemah mempunyai nilai Ka yang kecil (yaitu, sejumlah cukup banyak HA dan A terdapat bersama-sama dalam larutan; sejumlah kecil H3O+ ada dalam larutan; asam hanya terurai sebagian). Misalnya, nilai Ka untuk asam asetat adalah 1,8 × 10-5.

Asam kuat mencakup asam halida – HCl, HBr, dan HI. (Tetapi, asam fluorida, HF, relatif lemah.) Asam-asam okso, yang umumnya mengandung atom pusat ber-bilangan oksidasi tinggi yang dikelilingi oksigen, juga cukup kuat; mencakup HNO3, H2SO4, dan HClO4. Kebanyakan asam organik merupakan asam lemah.

Larutan asam lemah dan garam dari basa konjugatnya membentuk larutan penyangga.

Contoh Asam

RUMUS ASAM NAMAASAM REAKSIIONISASI Keterangan ValensiAsam
HF Asam Flurida HF H+ + F Monoprotik
HCl Asam Clorida HCl H+ + Cl Monoprotik 1
HBr Asam Bromida HBr H+ + Br Monoprotik 1
HI Asam Iodida HI H+ + I Monoprotik 1
HCN Asam Sianida HCN H+ + CN Monoprotik 1
H2S Asam Sulfida H2S H+ + S2+ Diprotik 2
HNO3 Asam Nitrat HNO3 H+ + NO3 Monoprotik 1
H2SO4 Asam Sulfat H2SO4 H+ + SO42+ Diprotik 2
H3PO3 Asam Pospit H2PO3 H+ + PO33- Triprotik 3
H3PO4 Asam Pospat H2PO4 H+ + PO43- Triprotik 3
H2CO3 Asam Karbonat H2CO2 H+ + CO32- Diprotik 2
H2C2O4 Asam Oksalat H2C2O4 H+ + C2O4 2

 

Sejarah

Sekitar tahun 1800, banyak kimiawan Prancis, termasuk Antoine Lavoisier, secara keliru berkeyakinan bahwa semua asam mengandung oksigen. Lavoisier mendefinisikan asam sebagai zat mengandung oksigen karena pengetahuannya akan asam kuat hanya terbatas pada asam-asam okso dan karena ia tidak mengetahui komposisi sesungguhnya dari asam-asam halida, HCl, HBr, dan HI. Lavoisier-lah yang memberi nama oksigen dari kata bahasa Yunani yang berarti “pembentuk asam”. Setelah unsur klorin, bromin, dan iodin teridentifikasi dan ketiadaan oksigen dalam asam-asam halida ditemukan oleh Sir Humphry Davy pada tahun 1810, definisi oleh Lavoisier tersebut harus ditinggalkan.

Kimiawan Inggris pada waktu itu, termasuk Humphry Davy, berkeyakinan bahwa semua asam mengandung hidrogen. Kimiawan Swedia Svante Arrhenius lalu menggunakan landasan ini untuk mengembangkan definisinya tentang asam. Ia mengemukakan teorinya pada tahun 1884.

Pada tahun 1923, Johannes Nicolaus Bronsted dari Denmark dan Martin Lowry dari Inggris masing-masing mengemukakan definisi protonik asam-basa yang kemudian dikenal dengan nama kedua ilmuwan ini. Definisi yang lebih umum diajukan oleh Lewis pada tahun yang sama, menjelaskan reaksi asam-basa sebagai proses transfer pasangan elektron.

Bahan pangan yang tersedia di alam tersusun atas unsur kimia seperti karbon (C), hydrogen (H), nitrogen (N), oksigen (O), sulfur (S), phosphor (P), dan lain-lain.  Setiap bahan pangan mempunyai susunan kimia yang berbeda-beda dan mengandung zat gizi yang bervariasi yang banyak jumlahnya. Lemak merupakan suatu kelompok senyawa yang heterogen, tetapi mempunyai kesamaan sifat kelarutannya. Lemak umumnya tidak larut dalam air, tetapi larut dalam pelarut organik seperti eter dan petroleum eter. Berat jenisnya lebih rendah daripada air. Yang tergolong sebagai lemak adalah lemak netral atau trigliserida dan lilin. Sterol, fosfolipid, ester asam lemak dan yang termasuk turunan lemak. Trigliserida adalah bentuk utama lemak, baik di dalam tubuh manusia maupun di dalam bahan pangan. Secara kimia, trigliserida terdiri atas 3 asam lemak yang melekat pada gliserol dan ikatan ester. Lemak (padat) pada umumnya mengandung mengandung asam lemak jenuh (lemak yang berikatan rangkap tinggi, sedangkan minyak (cair) tingkat ketidakjenuhannya tinggi berarti banyak mengandung asam lemak berikatan rangkap sehingga cenderung mudah teroksidasi, kecuali minyak kelapa kandungan asam lemak tidak jenuhnya rendah. Semakin panjang rantai atom karbon asam, akan semakin tinggi ketidakjenuhannya dan sifat fisik asam lemak ini cenderung semakin encer (Widyaningsih, 2004).

Bilangan asam adalah ukuran dari jumlah asam lemak bebas serta dihitung berdasarkan berat molekul dari asam lemak atau campuran asam lemak. Bilangan asam dinyatakan sebagai jumlah milligram KOH 0,1 N yang digunakan untuk mrnrtralkan asam lemak bebas yang terdapat dalam 1 gram minyak atau lemak. Derajat asam adalah banyaknya milliliter KOH 0,1 N yang diperlukan untuk menetralkan 100 gram minyak atau lemak (Ketaren, 2005). Sedangkan menurut Sumardi dan Hardoko (1992) bilangan asam lemak bebas adalah banyaknya basa dalam ml ekuivalen yang diperlukan untuk menetralkan 100 gram contoh yang ditentukan.

Angka FFA adalah indikasi dari jumlah ketengikan hidrolitik kandungan/kadar FFA yang ditentukan dengan titrasi alkali standar. Penentuan angka FFA harus ditetapkan untuk tiap spesies ikan, dimana batas maksimumnya akan berubah-ubah tergantung dalam tiap ikatannya.

Karakteristik

Minyak kelapa berdasarkan kandungan asam lemak digolongkan kedalam minyak asam laurat, karena kandungan asam lauratnya paling besar jika dibandingkan dengan asam lemak lainnya. Berdasarkan tingkat ketidak jenuhannya yang dinyatakan dengan bilangan iod (iodine value), maka minyak kelapa dapat dimasukkan ke dalam golongan non drying oils karena bilangan iod minyak tersebut berkisar antara 7,5 hingga 10,5 (Ketaren, 2008).

Minyak kelapa mengandung 84% trigliserida, sterol yang terdapat dalam minyak nabati disebut phitosterol dan mempunyai dua isomer yaitu beta sitosterol (C29H50O) dan stigmasterol (C29H48O). Sterol bersifat sebagai stabilizer dalam minyak. Tokoferol mempunyai 3 isomer yaitu α-tokoferol (titik cair 158-160 0C); α, β – tokoferol (titik cair 138 – 140 0C); dan β – tokoferol. (Muchtadi dan Sugiyono, 1992).

Kandungan jenis minyak kelapa tersusun atas unsure-unsur C, H, dan O. Minyak sawit terdiri atas fraksi padat dan fraksi cair dengan perbandingan yang seimbang. Penyusun fraksi padat terdiri atas asam lemak jenuh, antara lain asam miristat (1%), asam palmitat (45%) dan asam stearat. Sedangkan fraksi cair tersusun atas asam lemak tak jenuh yang terdiri dari asam oleat (39%), dan asam linoleat 11% (Silviana, 2008).

Proses penyaringan minyak kelapa sawit sebanyak 2 kali (pengambilan lapisan minyak jenuh) menyebabkan kandungan asam tak jenuh menjadi lebih tinggi. Tingginya kandungan asam lemak tak jenuh menyebabkan minyak menjadi mudah rusak oleh proses penggorengan karena selama proses menggoreng, minyak akan dipanaskan secara terus menerus pada suhu tinggi serta terjadinya kontak dengan oksigen dari udara luar yang memudahkan terjadinya oksidasi pada minyak  (Sartika, 2009).

Prinsip Metode Analisa

Menurut Herlina (2002) angka asam menunjukkan banyaknya asam lemak bebas yang terdapat dalam suatu lemak atau minyak. Angka asam dinyatakan sebagai jumlah miligram NaOH yang dibutuhkan asam lemakbebas yang terdapat dalam satu gram lemak atau minyak.

Asam

Menurut Sudarmadji, et. al., (2007), cara penentuan minyak atau lemak sebanyak 10 -20 gram ditambahkan 50 ml alkohol netral 95% kemudian dipanaskan 10 menit dalam penangas air sambil diaduk dan ditutup pendingin balik. Alkohol berfungsi untuk melarutkan asam lemak. Setelah didinginkan kemudian dititrasi dengan KOH 0,1 N menggunakan indikator phenolphathalein sampai tepat warna merah jambu.

Angka asam

Menurut Widjanarko (1996) lemak atau minyak dilarutkan dalam alcohol 95% dan dipanaskan selama 10 menit diatas penangas air sambil diaduk dan ditutup dengan pendingin balik, setelah dingin asam lemak bebas dititrasi dengan KOH dengan indikator pp sampai merah jambu.

Angka asam

 Lemak dan Minyak

            Lemak merupakan pangan yang berenergi tinggi, setiap gramnya member lebih banyak energi daripada karbohidrat atau protein. Lemak juga merupakan makanan cadangan di dalam tubuh, karena kelebihan karbohidrat diubah menjadi lemak dan disimpan dalam jaringan adipose. Lemak terutama terdiri atas trigliserida tetapi juga mengandung kolestrol, yang diduga mempunyai hubungan dengan penyakit jantung dan asam-asam lemak esensial yaitu linoleat dan asam arakhidonat (Buckle, et al, 2007).

Lemak atau minyak merupakan zat makanan yang penting untuk menjaga kesehatan tubuh manusia. Selain itu, lemak dan minyak juga merupakan sumber energy yang lebih efektif dibandingkan karbohidrat dan protein (Winarno, 2002). Sedangkan menurut Sediaoetama (2008), lemak adalah sekelompok ikatan yang terdiri atas unsur-unsur Carbon (C), Hidrogen (H) dan Oksigen (O) yang mempunyai sifat dapat larut dalam zat-zat pelarut tertentu (zat pelarut lemak) seperti petroleum eter, benzene, lemak, yang mempunyai titik lebur tinggi bersifat padat pada suhu kamar, sedangkan yang mempunyai titik lebur rendah bersifat cair pada suhu kamar.

Lemak dan minyak terdiri dari trigliserida campuran yang merupakan ester dari gliserol dan asam lemak rantai panjang. Angka nabati terdapat dalam buah-buahan, kacang-kacangan, biji-bijian, akar tanaman dan sayur-sayuran. Dalam jaringan hewan, lemak terdapat diseluruh badan, tetapi jumlah terbanyak dalam jaringan adipose dan tulang sumsum trigeliserida dapat berwujud padat atau cair. Hal ini tergantung dari komposisi asam lemak yang menyusunnya. Sebagian besar minyak nabati berbentuk cair karena mengandung sujumlah asam lemak tidak jenuh, yaitu oleat, linoleat atau asam linoleat dengan titik cair yang rendah. Lemak hewani pada umunya berbentuk padat pada suhu kamar karena banyak mengandung asam lemak jenuh misalnya asam polimitat dan stearat yang mempunyai titik cair lebih tinggi (Ketaren, 2008).

Dalam proses pembentukannya, trigliserida merupakan hasil proses kondensasi satu molekul gliserol dengan tiga molekul asam-asam lemak (umumnya ketiga asam lemak berbeda-beda) yang membentuk satu molekul trigliserida dan tiga molekul air.

O

H2C – OH       HOOCR1           H2C – O – C – R1

                                                                                O

HC – OH      + HOOCR2        HC – O –C –R2           + 3 H2O

O

H2C – OH       HOOCR3        H2C – O – C – R3

Gliserol                        asam lemak    trigliserida              air

Kalau R1 = R2 = R3 maka trigliserida yang terbentuk disebut trigliserida sederhana (simple triglyceride) sebaliknya berbeda disebut trigliserida campuran (mixed trigliseride)

 Hubungan Asam Lemak Bebas dengan Kualitas

Menurut Ketaren (2008) lema dengan kadar asam lemak bebas lebih besar dari 1%. Jika dicicipi akan terasa membentuk film pada permukaan lidah dan tidak berbau tengik. Namun intensitasnya tidak bertambah dengan bertambahnya jumlah asam lemak bebas. Asam lemak bebas, walaupun berada dalam jumlah kecil mengakibatkan rasa tidak lezat. Hal ini berlaku pada lemak yang mengandung asam lemak tidak dapat menguap dengan jumlah atom 5 lebih besar dari 14 (5 > 14).

Penentuan kualitas minyak (murni) sebagai bahan makanan yang berkaitan dengan proses ekstraksinya, atau ada tidaknya perlakuan pemurnian lanjutan misalnya penjernihan (refining), penghilangan bau (deodorizing), penghilangan warna (bleaching), dan sebagainya. Penentuan tingkat kemurnian minyak ini sangat berhubungan erat dengan kekuatan daya simpanya, sifat gorengannya, baunya maupun rasanya. Tolok ukur kualitas ini termasuk angka asam lemak bebas (Free Fatty Acids atau FFA), bilangan peroksida, tingkat ketegikan dan kadar air

 

Prinsip Kerja Bahan

Indikator PP

Indikator PP adalah indikator perubahan warna dengan ditandai tepat hilangnya warna merah. Cara pembuatan indikator PP adalah 1 gram Penophatalein dalam 100 ml alkohol

 KOH

KOH berfungsi untuk melarutkan asam lemak hasil hidrolisa agar mempermudah reaksi dengan basa sehingga terbentuk. Cara pembuatan KOH adalah KOH sebanyak 6,5 gram dilarutkan dalam aquadest hingga 1 L

Pengertian Basa

Definisi umum dari basa adalah senyawa kimia yang menyerap ion hydronium ketika dilarutkan dalam air.

Menurut Svante Arrhenius : Basa merupakan suatu senyawa yang dapat menghasilkan ion Hidroksida [OH], bila dilarutkan dalam air mempunyai rasa pahit dan bersifat kaustik.

Basa adalah lawan (dual) dari asam, yaitu ditujukan untuk unsur/senyawa kimia yang memiliki pH lebih dari 7. Kostik merupakan istilah yang digunakan untuk basa kuat. jadi kita menggunakan nama kostik soda untuk natrium hidroksida (NaOH) dan kostik postas untuk kalium hidroksida (KOH). Basa dapat dibagi menjadi basa kuat dan basa lemah. Kekuatan basa sangat tergantung pada kemampuan basa tersebut melepaskan ion OH dalam larutan dan konsentrasi larutan basa tersebut.

Reaksi: Kalsium Hidroksida + Asam Sulfat ————> Kalsium Sulfat + Air

Ca(OH)2 (aq) + H2SO4 ————> CaSO4(aq) + 2H2O

Teori Dasar

Svante August Arrhenius pada tahun 1887 menyatakan bahwa : “ Molekul-molekul elektrolit selalu menghasilkan ion-ion negatif dan positif jika dilarutkan dalam air “

Selanjutnya pada tahun 1900 Svante Arrhenius mengemukakan teori yang dikenal samapi sekarang yaitu Teori Asam Basa Arrhenius. “Basa merupakan suatu senyawa yang dapat memberikan ion Hidroksida (OH) bila dilarutkan dalam air.

Pada kimia modern basa dapat menghasilkan ion Hidroksida (OH) dengan 2 cara :

  1. Senyawa Basa dalam pelarut air menghasilkan ion Hidroksida (OH) secara langsung.

NaOH Na+ + OH

  1. Senyawa Basa yang bereaksi dengan air menghasilkan ion Hidroksida (OH).

NH3 + H2O NH4+ + OH

Untuk menunjukan sifat basa, larutan NH3 sering ditulis NH4OH.

Jumlah ion (OH) yang dapat menghasilkan oleh suatu molekul basa disebut Valensi Biasa.

Contoh Basa

RUMUS BASA NAMABASA Reaksi Ionisasi ValensiAsam
NH3 Amoniak
NH3OH Amonium Hidroksida
NHOH Natrium Hidroksida NHOH Na+ + OH 1
KOH Kalium Hidroksida KOH K+ + OH 1
Mg (OH)2 Magnesium Hidroksida Mg (OH)2 Mg2+ + 2OH 2
Ca (OH)2 Kalsium Hidroksida Ca (OH)2 Ca2+ + 2OH 2
Sr (OH)2 Stronsium Hidroksida Sr (OH)2 Sr2+ + 2OH 2
Ba (OH)2 Barium Hidroksida Ba (OH)2 Ba2+ + 2OH 2
Al (OH)2 AlumuniumHidroksida Al (OH)2 Al 2+ + 3OH 3
Fe (OH)2 Besi (II) Hidroksida Fe (OH)2 Fe 2+ + 2OH 2
Fe (OH)3 Besi (III) Hidroksida Fe (OH)3 Fe2+ + 3OH 3

BAB III
Penutup

A. Kesimpulan

berdasarkan teori-teori yang telah tersebutkan di dalam makalah ini dan apabila pembaca telah membaca makalah ini maka dapat mengetahui bahwa :
1.penambahan sedikit asam atau sedikit basa atau pengenceran ke dalam larutan penyangga tidak mengubah ph larutan itu.

2.hasil pengamatan dan perbedaan perubahan ph larutan penyangga dan bukan penyangga akibat penambahan sedikit asam atau basa atau pengenceran.
3.beberapa jenis bilangan asam basa.

4.cara menentukan ph dan poh suatu larutan penyangga.


B. Kritik & saran

hendaknya kalian jangan menyentuh asam yang terdapat di laboratorium terutama asam sulfat (h2so4) dan asam klorida (hcl) karena kedua asam tersebut jika terkena pada kulit, maka kulit kita akan melepuh dan akan mengakibatkan gatal-gatal.

Perlu anda ketahui bahwasanya larutan asam dan basa merupakan larutan elektrolit sehingga di dalam air akan terurai menjadi ion-ion.
Demikian laporan ini saya susun. Dan penulis mengucapkan banyak terima kasih atas pihak yang telah membantu penulis dalam penyusunan makalah ini, sehingga penulis dapat menyelesaikannya.

Penulis merasa cukup sekian kata penutup yang disampaikan. “tak ada gading yang tak retak”. Dalam laporan ini penulis merasa masih banyak kekurangan. Oleh karena itu saran dan kritik yang dapat membangun perbaikan makalah ini dan sedikit banyaknya saya ucapkan terima kasih.

Guna peyempurnaan makalah ini,saya sangat mengharapkan kritik serta saran dari dosen pembimbing beserta teman-teman kelompok lain.

Daftar pustaka

Dreisbach,Dale,1966,Liauids and Solution,Houghton Mifflin CO,Boston

Jones, R.E.; Templeton, D.H. 1958. The crystal structure of acetic acid.

Lancaster, Mike, 2002 Green Chemistry, an Introductory Text, Cambridge

Suresh, Bala, 2003. Acetic Acid,SRI International

Wagner, Frank S. 1978,  Acetic acid. In: Grayson, Martin (Ed.) Kirk-

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s